Iterative algorithms with perturbations for Lipschitz pseudocontractive mappings in Banach spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Methods for Pseudocontractive Mappings in Banach Spaces

and Applied Analysis 3 Lemma 1 (see [1, 2]). Let E be a Banach space and let J be the normalized duality mapping on E. Then for any x, y ∈ E, the following inequality holds: 󵄩󵄩󵄩󵄩x + y 󵄩󵄩󵄩󵄩 2 ≤ ‖x‖ 2 + 2⟨y, j (x + y)⟩, ∀j (x + y) ∈ J (x + y) . (14) Lemma 2 (see [20]). Let {s n } be a sequence of nonnegative real numbers satisfying s n+1 ≤ (1 − λ n ) s n + λ n δ n , ∀n ≥ 0, (15) where {λ n } and ...

متن کامل

Viscosity approximation methods for pseudocontractive mappings in Banach spaces

Strong convergence of implicit viscosity approximation methods for pseudocontractive mappings in Banach spaces Lu-Chuan Ceng a b , Adrian Petruşel c , Mu-Ming Wong d & Su-Jane Yu e a Department of Mathematics, Shanghai Normal University, Shanghai 200234, China b Scientific Computing Key Laboratory of Shanghai Universities, Shanghai, China c Department of Applied Mathematics, Babeş-Bolyai Univer...

متن کامل

On the Convergence of Iterative Processes for Generalized Strongly Asymptotically ϕ-Pseudocontractive Mappings in Banach Spaces

Throughout this paper, we assume that X is a uniformly convex Banach space and X∗ is the dual space of X. Let J denote the normalized duality mapping form X into 2 ∗ given by J x {f ∈ X∗ : 〈x, f〉 ‖x‖2 ‖f‖2} for all x ∈ X, where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if X is uniformly smooth, then J is single valued and is norm to norm uniformly continuous on any b...

متن کامل

On the Convergence of Implicit Picard Iterative Sequences for Strongly Pseudocontractive Mappings in Banach Spaces

⟨(I − T) x − (I − T) y, j (x − y)⟩ ≥ k 󵄩󵄩󵄩󵄩x − y 󵄩󵄩󵄩󵄩 2 (4) for all x, y ∈ D(T), where k = (t − 1)/t ∈ (0, 1). Consequently, from inequality (4) it follows easily that T is strongly pseudocontractive if and only if 󵄩󵄩󵄩󵄩x − y 󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩x − y + s [(I − T − kI) x − (I − T − kI) y] 󵄩󵄩󵄩󵄩 (5) for all x, y ∈ D(T) and s > 0. Closely related to the class of pseudocontractive maps is the class of accret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Sciences and Applications

سال: 2015

ISSN: 2008-1901

DOI: 10.22436/jnsa.008.06.04